In VITRO ASSEMBLY of the øX174 procapsid from external scaffolding protein oligomers and early pentameric assembly intermediates.

نویسندگان

  • James E Cherwa
  • Lindsey J Organtini
  • Robert E Ashley
  • Susan L Hafenstein
  • Bentley A Fane
چکیده

Bacteriophage øX174 morphogenesis requires two scaffolding proteins: an internal species, similar to those employed in other viral systems, and an external species, which is more typically associated with satellite viruses. The current model of øX174 assembly is based on structural and in vivo data. During morphogenesis, 240 copies of the external scaffolding protein mediate the association of 12 pentameric particles into procapsids. The hypothesized pentameric intermediate, the 12S⁎ particle, contains 16 proteins: 5 copies each of the coat, spike and internal scaffolding proteins and 1 copy of the DNA pilot protein. Assembly naïve 12S⁎ particles and external scaffolding oligomers, most likely tetramers, formed procapsid-like particles in vitro, suggesting that the 12S⁎ particle is a bona fide assembly intermediate and validating the current model of procapsid morphogenesis. The in vitro system required a crowding agent, was influenced by the ratio of the reactants and was most likely driven by hydrophobic forces. While the system reported here shared some characteristics with other in vitro internal scaffolding protein-mediated systems, it displayed unique features. These features most likely reflect external scaffolding protein-mediated morphogenesis and the øX174 procapsid structure, in which external scaffolding-scaffolding protein interactions, as opposed to coat-coat protein interactions between pentamers, constitute the primary lattice-forming contacts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformational switch-defective X174 internal scaffolding proteins kinetically trap assembly intermediates before procapsid formation.

Conformational switching is an overarching paradigm in which to describe scaffolding protein-mediated virus assembly. However, rapid morphogenesis with small assembly subunits hinders the isolation of early morphogenetic intermediates in most model systems. Consequently, conformational switches are often defined by comparing the structures of virions, procapsids and aberrantly assembled particl...

متن کامل

Eliminating the requirement of an essential gene product in an already very small virus: scaffolding protein B-free øX174, B-free.

Unlike most viral assembly systems, two scaffolding proteins, B and D, mediate bacteriophage øX174 morphogenesis. The external scaffolding protein D is highly ordered in the atomic structure and proper function is very sensitive to mutation. In contrast, the internal scaffolding protein B is relatively unordered and extensive alterations do not eliminate function. Despite this genetic laxity, p...

متن کامل

Detection of intermediates and kinetic control during assembly of bacteriophage P22 procapsid.

Bacteriophage P22 serves as a model for the assembly and maturation of other icosahedral double-stranded DNA viruses. P22 coat and scaffolding proteins assemble in vitro into an icosahedral procapsid, which then expands during DNA packaging (maturation). Efficient in vitro assembly makes this system suitable for design and production of monodisperse spherical nanoparticles (diameter approximate...

متن کامل

Quantitative analysis of multi-component spherical virus assembly: scaffolding protein contributes to the global stability of phage P22 procapsids.

Assembly of the hundreds of subunits required to form an icosahedral virus must proceed with exquisite fidelity, and is a paradigm for the self-organization of complex macromolecular structures. However, the mechanism for capsid assembly is not completely understood for any virus. Here we have investigated the in vitro assembly of phage P22 procapsids using a quantitative model specifically dev...

متن کامل

Subassemblies and Asymmetry in Assembly of Herpes Simplex Virus Procapsid

UNLABELLED The herpes simplex virus 1 (HSV-1) capsid is a massive particle (~200 MDa; 1,250-Å diameter) with T=16 icosahedral symmetry. It initially assembles as a procapsid with ~4,000 protein subunits of 11 different kinds. The procapsid undergoes major changes in structure and composition as it matures, a process driven by proteolysis and expulsion of the internal scaffolding protein. Assemb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 412 3  شماره 

صفحات  -

تاریخ انتشار 2011